
Int. J. Solids Stru{·tures, 1969, Vol. 5, pp, 817 to 832. Pergamon Press. Printed in Great Britain

DYNAMIC BEHAVIOUR OF CYLINDRICAL SHELLS
STRENGTHENED WITH RING RIBS-PART I.

INFINITELY LONG SHELL

Y, V, NEMIROVSKY and V. N. MAZALOV

Hydrodynamics Institute of Siberian Division of the USSR Academy of Sciences. Novosibirsk, USSR

Abstract·-The paper considers the dynamic behaviour of infinitely long cylindrical shells made of ideally
rigid-plastic material and strengthened with ring ribs of limited rigidity. The principal assumptjons are identical
with those made in the work [1] where shells with absolutely rigid rings were considered. Distribution of moments
and displacements is determined, The values of residual displacements are found as well as of motion stopping
times for various loads and parameters of the shell and its strengthening ribs. The maximal residual displace­
ment accumulated in the shell for the entire period of motion under the conditions of "local" collapse is shown
to be practically independent of the ring rigidity and to coincide rather accurately with the maximal residual
displacement of the shell having absolutely rigid ribs. It is shown that all the results obtained can be applied,
after suitable redefinitions, to the case of shells strengthened in the span between the supporting rings, by
longitudinal and ring-like ribs of "small" rigidity. The results obtained are also valid for cylindrical shells of
finite length with moving supports.

NOTATION

2/,R,2h
T,
2b,d
Mx
w

P
to
}'Ol, )'02

X

t

the length of a span, the radius of the middle surface, the thickness of a shell wall, respectively
the turning force per unit of length carried by a facing
the height and the breadth of a rib, respectively
the bending moment per unit of the circumference of the middle surface
the radial displacement
the uniformly distributed pressure
the duration of pulse action
the surface density of the material of a facing and ribs, respectively
the coordinate on the generatrix
the time
the yield limit for stretching-pressing the facing and the ribs, respectively
the specific weight of a facing and ribs, respectively.

INTRODUCTION

THE dynamic behaviour of cylindrical shells strengthened with rings from ideal rigid­
plastic material and under the action of impulsive loads was studied by Hodge [1--3],
where infinitely long shells were considered and the rings were assumed to be absolutely
rigid. Thus, the behaviour of a smooth shell with the length equal to the distance between
the rings was effectively studied in [1-3]. The behaviour of real shells strengthened with
rings of limited rigidity has a number of peculiarities which are considered in the present
paper. Just as in [IJ it is assumed that the material of the shell and rings is ideally rigid­
plastic and satisfies a simplified yield condition (Fig. 1) and the flow law associated with it.
An impulse of rectangular form (Fig, 2) is applied. The duration of its action is assumed
to be sufficiently short for the deformations to be regarded as small compared with unity.
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To simplify the study it is assumed that the strengthening elements have a rectangular
cross-section and their torsional rigidity is neglected. Under the above assumptions we
study the character of shell motions for various values of impulsive loads, various stiffnesses
of strengthening rings and various parameters of shell spans. It is shown that all the results
hitherto obtained by means of corresponding redefinitions are applicable in the case of
shells strengthened in the span between stiff longitudinal ribs and/or ring ribs of "small"
stiffness. The results obtained are also valid for cylindrical shells of finite length with moving
supports. It should be noted that at the "local" collapse the maximal residual displacement
accumulated in the shell for the time of its motion practically does not depend on ring
stiffness and with a good accuracy coincides with maximal residual displacement in the
shell with absolute rigid rings.

1. AXISYMMETRICAL SQUEEZING

Just as in [1-3J let us consider first an infinitely long shell strengthened with eq uidistant
rings, the distance being equal to 21. Then under the action of equally distributed impulsive
load P the behaviour of all the spans in the shell is identical, so it is sufficient to study the
behaviour of one span. Then the equation of the cylindrical shell motion in the span
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between the rings in dimensionless form is the same as in [1]:

m"+2,u2(t 2+P-W) = °
and the equation of ring motion has the form

p+q- +q+ -(I +ao)-)"WO= °
where

819

(1.1)

(1.2)

m = M x/(JOlh2, t2 = T2/2(JOlh, P = pR/2(JOlh,,u = 1/.j(Rh)

w = wYolR/2(JOlht~, ao = c5(J02/h(Jol, q± = rn'(O, t)/2,u8

8 = d/.j(Rh), A = 1+Y02/Y01, Wo(t) = W(O, t).

The primes indicate differentiation with respect to the dimensionless coordinate y = x/I
and the dots with respect to dimensionless time t = t/to. The origin of the coordinates is
chosen at a supporting ring.

Under the action of relatively low loads and at sufficiently great rigidity of rings there
will be no shell motion until the load reaches its maximum value of PM for the span [1]:

PM = 1+2/,112.

In this case the shearing forces on the bay support are equal to

+ m'(O, t) 2
q- =~-=_.

2,118 ,118

(1.3)

(1.4)

If at the given value of PM the stress in the ring reaches the yield stress (J 02' then sub­
stituting (1.4) into (1.2) at Wo(t) == 0, we obtain the equation

,u28aO - 4,11 - 28 = 0.

The root of this equation

(1.5)

defines the optimal placing of rings at which for the loads close to the static maximum
ones "the local" collapse of the shell in the span between the rings (,11 ;:0-: ,11*) is replaced
by the "general" collapse of the shell, together with the rings which corresponds to axis­
symmetric squeezing (,11 < ,11*). If ,11 < ,11* and P ~ pO

pO = 1+8aOj((} +2,11) (1.6)

then there is no shell motion. If ,11 < ,11*, but P > pO, then there is shell motion which
corresponds to its axisymmetric squeezing. In this case W(y, t) = Wo(t) and t2 = -1.
Substituting these values into equation (1.1) and integrating it under the conditions

m'(1, t) = 0,

we obtain

m(O, t) = mo(t) ... (-1 ~ rn o ~ 1)

Then from (1.2) we have
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Taking into consideration the initial conditions

Wo(o) W0(0) = 0

we obtain

Ino + 'Y.OJI 2(2 - y)y
In =, ._'."'---

(2p +Hl) ,

Wo(r) [(P-I)(2JI+0) Oao]r 2 /2(2p+/JJ)

'Y. = (P -1 H/. - 1)+ ao . .. (0 :::;; y :::;; t, 0 ::; r :::;; I).

(1.7)

From (1.7) it is evident that Wo(r) ;:::: 0 at P;:::: po. As for the axisymmetric squeezing we
should have -I ::; In ::; 1, then the solution (1.7) is valid under the condition that

P::; Po = (PM -Cl 1P1*)/(I-:x 1)

:Xl = (p + 20)/(p +2),0), P1* = 1+2(pOao-3)jp(p+20)

For r ;:::: 1a shell will continue its motion under its own inertia (P == 0). The corresponding
solution of equations (t.1) and (1.2), with the use of the initial conditions for Wo(r) from (t.7)
at r = 1, has the form

m = mo +OJI 2(l +ao - ),)(2 - y)yj(2p + )J)),

Wo(r) = {P(2p +0)(2r -1) [2p +O(t +ao)]r 2 }/2(2p + H))

t, = -I,
- (1.8)

(0 ::; y ::; I, 1 :s:: r :s:: TO).

The solution (1.8) will be valid if it satisfies the inequalities m'lO, r) ;:::: °and W(v, r) ;:::: 0,
or

(1.9)

The residual displacement is

Wo(rO) = (2p+ O)P(P - p O)j2po(2p + )J)). (1.1 0)

It should be noted, that in the case of identical material of the shell and rings the bending
moment in (l.8) does not depend on y. It is due to the fact, that under the axisymmetric
squeezing the behaviour of an infinitely long shell is identical to that of rings made of the
same material.

The condition of immobility of rings

Further, if no special stipulations are made, we will consider the shell spans for which
p ;:::: p*. In this case dynamic loads either do not cause any motion at all or cause a motion
with a bending in the span. Then, depending on the rigidity of rings and the value of the
acting load the rings either remain motionless or accompany the shell motion.

Further, we shall consider only the second possibility, as the first one corresponds to
the motion of a smooth shell clamped at the ends, studied in [1]. For this we should define
first the largest loads under which the rings are motionless. From solution [1] for shells
with motionless supports it follows that the shearing forces at the supports do not increase
with time. Thus, if rings are motionless during the load action they will remain motionless.
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From [1J we obtain

+ _ {Lu2(P-1)+6Jj4,u8,,,(PM ~ P ~ P IM)

q - [6(P -1)J"!/28 ... (P z P1M)

where

821

(1.11)

(1.12)

Naturally, depending on the rigidity of the rings, the stresses in them may reach yield
stress under the loads P ~ PIM as well as under the loads P > P IM . Consequently, sup­
posing in (1.2) Wo('r) == 0 and substituting (1.11) into it, we shall obtain the following
maximal loads under which the rings remain motionless (though the shell in the span is
in motion):

where

PI* = 1+2(,u8ao-3)j,u(,u+28) ... (,u* ~,u ~,ud

P2* = 1+6j,ui ... (,u z,ud
(1.13)

(1.14)

is a root of the equation in the expressions obtained from (1.2) by substituting into (1.11),
the values P = PIM from (1.12) and Wo(r) == O.

From (1.13), (1.14) it is obvious that the maximum dynamic load for the rings under
fixed values 8 and ao increases with an increase of,u over the interval

(I .15)

and does not depend on ,u at ,u > ,Ill' Such a qualitative difference is the result of two
essentially different types of the shell span motion: with a plastic hinge (,u ~ ,ud and with
a plastic zone in the middle of the span (,u > ,u d.

2. SHELLS WITH "SHORT" SPANS UNDER "MODERATE" LOADS

If the excess of the load P over PI * is not considerable then though the motion of the
shell span is accompanied by that of the ring, it is natural to assume that the plastic regime
and the corresponding fields of displacement velocities are the same as in case of motion­
less supports [1]. Thus for the shells with the span (1.16) the regime AB is assumed for
which

(2.1 )

and the corresponding field of displacement velocities has the form

(2.2)

Here the dimensionless displacement W(y, r) is defined by formula (1.2) and
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Substituting (2.1) and (2.2) into (1.1) and integrating the obtained equation under the
boundary conditions

m(O,r)=-I, m(l, r) = J, m'(l, r) = 0 (2.3)
we obtain

where

m = p2 [(W, - Wo)l/3-(p-I- WotvZ]+Ay-l

pZ[2W, + Wo - 3(P- I)] +6 = 0

q± = A/21dl

(2.4)

(2.5)

(2.6)

A = 2-pZ[(W, - Wo)/3-P+ 1+ Wol
Substituting (2.6) into (1.2) and integrating the obtained equation under zero initial condi­
tions we obtain

o :-::;; r :-::;; 1.

Wo(r) = al(P-P1*)r 2/2 ... (0:-::;; r :-::;; I).

Then from (2.5) we obtain

3r2[(I-aJ!3)(P- PI *)+ PI * - PM]
WI (r) = ------------4---------·.

(2.7)

(2.8)

(2.9)

(2.10)

Thus the complete solution for the first phase of the motion will be

m = p2{[PI* - PM +(1 -ad(P - PI*)]y3 /2 - [(I-adP + a1P1* _1]yZ}

+ {2 + [PM+aIPI * +(1-adP-2]pz/2}y-l, tz = -1

W(y, r) = {3Y[(PI * - PM)-t-~ -ad(p - PI.)] +al(P- PI.)} r Z/2

(O:-::;;r:-::;;I, O:-::;;y:-::;;l, O<P:-::;;PI, PI*:-::;;P:-::;;P*).

The necessary limitation (-1 :-::;; m :-::;; I) for the regime AB will be satisfied, when inequality
(2.10) is also satisfied, where

(2.11)

Note that P* ;::: PI M, i.e. in the case of rings with limited rigidity, the load, at which the
plastic domain occurs, exceeds the corresponding load in the case of absolutely rigid rings.

For r ;::: I the load is vanishing (P == 0). Then, integrating, as above, the equations
of motion (1.1) and (1.2), and considering (2.1), (2.3) and initial conditions (2.7), (2.8) for
r = 1), we obtain the solution

m = p2[(a IPI * -PM )y3/2-(aIPI* _I)y2 +(aIPI * +3PM -4)y/2] -I,

t z = I,

W(y, r) = Wo(r) + [WI(r)- Wo(r)]y ... (0:-::;; y :-::;; 1,1 :-::;; r :-::;; TO)

Wo(r) = al[(P-PI*)(2r-l)-PI *(r-I)Z]/2 ... (l :-::;; r:-::;; To) (2.12)

WI(r) = {[(3 -ad(P - PI *) + 3(PI * - P M)](2r -1) -(2 + PIM -aIP1*)(r -1)2]/4

... (1 :-::;; r :-::;; r 0)

(2.13)
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In this case the condition Wo(r) 2': 0 leads to the inequality

r:-;:; ro = PjPt *. (2.14)

At the moment r = ro the ring stops its motion, though the shell in the span is still moving
as

Wt(r 0) 3ro(Pt * - PM )/2 2': O... (/1 2': !{*).

Consequently, it is necessary to find a solution under the same regime AB and for P == 0,
Wo(r) == O. As initial conditions we use the following

(2.15)

(2.16)

The corresponding solution is

m = -(l+/12j2)y3+/12y 2+(3-/12/2)y-l, t2 = -I,

W(y, r) = Wo(ro)+[Wt(r)- Wo(ro)]y,

Wl(r) = Wt(ro)+ Wt(ro)(r -ro) 3PM (r-ro)2/4

(ro :-;:; r :-;:; rO, /1*:-;:; /1 :-;:; /12' P I *:-;:; P ~ P*).

In this case the necessary inequalities for the regime AB [1] will be satisfied, if

!l* :-;:; 11 :-;:; ~6. (2.17)

The condition WI (r) 2': 0 leads to the inequality

(2.18)

At the moment r = rO the motion is stopped and the maximal residual displacement is
determined by the formula

Wl(ro) = Wt(ro)+ Wt(ro)(ro ro)-3PM (rO -ro)2/4. (2.19)

Note that the time of stopping (2.18) for the shells with spans (2.17) with mobile rings
coincides with the corresponding time of stopping the motion in case of motionless rings
[I]. The solution obtained in the present section is valid for shells with "short" spans

and under "moderate" loads

/1* :-;:; 11 :-;:; 112 = min(J6, Ill)' (2.20)

(2.21)

If /it > ~6 then under the "moderate" loads (2.21) in the shells with "moderate" spans

(2.22)

at the moment r = ro of ring stopping there occurs near the ring a plastic domain (regime
AD). As the corresponding motion takes place with the motionless rings, the solution may
be obtained in the same way as in [1]. Then the time of stopping may be determined by the
equality

(2.23)
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(3.1)

and the residual displacement has the form

Wl(rO) = WI (ro)+ [3rO(Pl* -PM)/2(2 - P1M)F x [2 -PIM +(PIM -1) In(P1M -1)J/2 (2.24)

where Wl(rO) and r o is derived from expressions (2.12) and (2.14).

3. SHELLS WITH "SHORT" SPANS UNDER "HIGH" LOADS

If p.* s ')6 and

{
P* ... (p.* s p. s p.d

P:2: P** =
P2* ... (p. :2: p.d

then in the shell, two plastic regimes will be realized

AB(O s Y s yd and B(YI S Y s 1).

Therefore, the distribution of the displacement velocities will be as follows

Wry, r) = WO(r) + [W01(r)- Wo(r)]Y/Yl' W01(r) = W(YI' r) ... (0 S Y s Yl)'

Substituting this value into (1.1) and integrating it under the boundary conditions

m(O, r) = -1, m(YI -0, r) = m(YI +0, r) = 1, m'(YI -0, r) = m'(Yl +0, r) = ° (3.2)

we obtain

m = p.2[f)y3 /3 +(Wo-P+ l)y2]'+cy-l ... (0 s Y s Yd

p.2y i[2f)YI + 3(Wo- P + 1)J +6 = °
f)(r) = ddr [W01(r) - Wo(r)J/Yt, c = [2 - p.2yi(f)ytl3 + Wo - P + 1)J/YI .

In the interval Yl S Y s 1 we have

(3.3)

m(y, r) = 1, Wry, r) = P-l.

Integrating the last equation under the zero initial conditions and taking into considera­
tion the continuity of displacements and velocities on the boundary Y = YI

W(YI -0, r) = W(YI +0, r) = W01(r),

we obtain

Wry, r) = W01(r) = (P -l)r,
(3.4)

(Yl S Y s 1, °S r S 1).

Now, from equation (3.3) for the value Wo, by integrating it under zero initial conditions,
we obtain

(3.5)

From equation (1.2), using expressions (3.3H3.5) we determine the unknown boundary

YOI = voB, Vo = [6/p.2(P-1)J±

B = [3(P-l)/2J±. [1 +(1 +2A.e2a/W"]/l~a.
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Consequently, as in the case of motionless rings, the plastic zone which occurs in the
middle of the span under loads (3.1) remains stationary during the load action and its
value depends on the "static" (0, ao) and "dynamic" (A) rigidities of rings.

The complete solution for the first phase (0 ::::;; r ::::;; 1) of motion is

(3.6)

(3.7)

(3.8)

t 2 = 1,

0::::;; Y ::::;; YOI : m = 1-2(I-Y/YoI)3, t2 = -1

W(y, r) = [P-I-6(YoI- Y)/Ji2 y61 ]r2/2

YOl ::::;; Y ::::;; 1: m(y, r) = 1, t2 = -1, W(y, r) = (P-l)r 2/2

(0 ::::;; r ::::;; 1, P ~ P**, Ji ~ Il*).

The necessary inequalities [1] for the considered regimes are satisfied and the condition
W(y, r) ~ 0 leads to the condition YOl ~ Vo or B ~ 1. The latter will be satisfied if P ~ P2*.
This inequality is satisfied as in the interval Ji* ::::;; Ji ::::;; Jil (which is not difficult to check)
P* ~ P2*.

Since Vo determines the size of the plastic domain at the motionless rings, the inequality
YOl ~ Vo means that a decrease in rings rigidity leads to a decrease in the size of the plastic
domain in comparison with that in the shell with absolutely rigid rings under the same
load.

For r ~ 1 the load is vanishing. Therefore, making calculations analogous to the above
ones we obtain (for P == 0)

j
0 ::::;; Y ::::;; Yl(r): m = 2Ylx(Y/Yd3

- 2(1 +2xYI)(Y/Yl)2 +2(2 +Ylx)Y/YI -1,

W(y,r)=P r-6x(YI-Y)/Ji2

Yl(r) ::::;; Y ::::;; 1: m(y, r) 1, t2 = 1, W(y, r) = P-r

{
YI(r) = 3{1 + [1 + 2..1.02a(r)/3lt }/JiOa(r) ,

a(r) = (l-..1.)(l-P/r)+ao, x(r) = r/yi.
(3.9)

Since YI(r) is a monotonically increasing function of time, after removing the load the
plastic domain begins to shrink. The conditions Yl(r) ::::;; 1 and W(y, r) ~ 0 reduce to the
inequalities

(3.10){
rl = P/P* ... (Ji* ::::;; Ji ::::;; Jid

r ::::;; roo =
ro = P/P2* ... (Ji ~ Jil)'

In thIS case ro determines the time of ring stopping when the plastic domain still exists,
r I determines the time of the plastic domain vanishing when the ring is still in motion.
Indeed,

as P* ~ PlM . For Ji = Jil the time of the plastic domain vanishing coincides with that of
the ring stopping.

Now we will study the behaviour of the shells with the span Ji* ::::;; Ji ::::;; Jil' Since at the
instant of time r = r I the plastic domain shrank into a plastic in the middle of the span
and the rings are still in motion, the solution will be the same as in (2.12) only instead of



826 Y. V. NEMIROVSKY and V. N. MAZALOV

(3.13)

initial conditions at r = 1, as in (2.12), one should use the corresponding initial condition
at r = rl'

Then the expressions for t 2and m coincide with (2.12) and for the displacement velocity
we obtain

Here
rl:-s;r:-s;rO=P/PI*, O:-S;y:-S;l, Il*:-S;ll:-S;PI, PzP*.

At the moment of time r = r° the rings stop, but the shell in the span between the rings is
in motion according to

WI(ro) = 3ro(PI*-PM)/2 z 0

the equality being possible only at P = P* (PI* = PM)'
For r z ro the corresponding solution is obtained in the same way as in (2.16), so that

m and t 2 coincide with the expressions (2.16) and for the displacement velocities we obtain

. ° °W(y, r) = 3PM(r -r)y/2 ... (ro :-s; r :-s; r ,0 :-s; y :-s; I, P* :-s; P :-s; Il2)' (3.12)

At the moment of time r = rO = P/PM the motion of the shell is stopped completely.
The maximal residual displacement is expressed by the formula

WI(rO) = 3PM(rO - ro)2/4 +(P - r d(ro - r d - (2 + PIM - iXIPI*)(ro- r d 2/4

+[P(P-l)-(P- r d 2J/2 ... (p*:-S; p:-S; P2,P z P*).

In the shells with the span P Z PI at the moment of time r = ro the ring stops and the
span of the shell has a plastic zone and is still in motion.

The corresponding solution is established just as the solution [IJ in the case of motion­
less supports and with a plastic domain, only instead of initial conditions at r = 1 as in
[IJ it is necessary to use initial conditions at r = ro from the solutions (3.8H3.1O).

In this case the expressions for t 2 , m, Wand YI are of the same form as in the case of
motionless rings [1]. Thus, the conditions

-1 :-s; m(y, r) :-s; I, W(y, r) z 0, YI(r) :-s; 1

will be satisfied if P2 :-s; P :-s; J6 and r :-s; rl = P/PI.'J' At the moment of time r = rl the
moving hinge circle reaches the middle of the span and the shell undergoes a motion,
corresponding to the regime AB with hinges in the middle and at the end of the span at
motionless rings.

In this case the expressions for m and t2 coincide in the form with the corresponding
expressions for the regime AB obtained in [1]. For the velocities of displacement one has

W(y,r) = [rl(PIM -l)-3PM(r-rd/2Jy ...

(rl:-s;r:-s;ro, O:-S;y:-s;l, JlI:-S;P:-s;J6, pzP2*)·

The motion of the shell is stopped at moment of time rO = P/PM and the maximal residual
displacement of the shells with the spans PI :-s; P :-s; J6 under the loads P Z P2* is deter­
mined by the formula

WI(rO) = P[P(3PIM-PM)-2PMPIMJ/4PMPIM' (3.14)
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4. SHELLS WITH "MODERATE" SPANS UNDER "HIGH" LOADS

The solutions (3.6), (3.7), (3.8) and (3.11) are the same also in the case when fil :2: J6
and max(J6, Jl*) ~ fi ~ fil are the same until the instant of time 1: = 1:0 and at 1:0 ~ 1: ~ to

the solution would be identical to that for the case of motionless supports and plastic
domains near them [I]. But in this case P :2: P* and the times of motion stopping r O are
determined by expression (2.23). The residual displacement is determined by formula (2.24),
where

5. SHELLS WITH "LONG" SPANS UNDER "HIGH" LOADS

If fi ::::: fil :2: J6, then at r ::::: TO the motion of the shell occurs with three plastic regimes

AD(O ~ Y ~ u), AB(u ~ Y ~ yd,

The corresponding solution is as follows:

o~ y ~ u: m(y, r) = 1, 12 = 0, W(y, t) = 0

u ~ y ~ YI:m = [4y3 -6(z+2u)y2+12uYIy+(u-l-Yd(u2-4uYI+Yf)J/z-\

12 = I, W(y, r) (P-r)(y-u)/z

YI:::;y~l:m(y,t) 1, 12 = I, W(y,r)=P-r

(ro:::; t ~ rl, Jl::::: JlI :2: J6, P::::: P2*)

Here

(5.1)

(5.2)

Z2 = (PIM-I)[2+(3-2P2*)(P-rf/(P2* I)(P- r o)2J,

u = Yo z + [v In(z + v)(Yo - v)/(z - v)(Yo + v)J/4,

YI = z+u, Yo = [6/fi2(P2*_l)J1, v = 2J3/fi.

The necessary conditions of plasticity [IJ will be satisfied, but the condition WI(r) :2: 0
on the velocity will be satisfied if

r ~ rl P[I-J2(P2* Of/P2*(VI ch /1 1 +sh fJdJ,

VI = 2J3/fit, /1 1 = (fi-Jld/J3.

At the moment 1: = r I the plastic domain is vanishing in the middle of the span, but the
motion continues. At r ::::: t I the solution in its outward appearance coincides with solution
(21) from [IJ, if we admit that

u = UI(t - r d +u(r d, u(r d = 1 z I '

ul = u(rd = (zf-v2/2)/zl(P-Td, Zl = z(Td.

The time of motion stopping is determined by the expression

(5.3)

(5.4)
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(5.5)

The maximal residual displacement is found from the expression

W1(rO) a(2z I -ali d/21i 1+ (P1JI.l- l)u12In(v/z IJ2) + [P(P -ll-(P - r d2J/2,

a = zl(P-rd/(zl +1'/,.;'2) (/1 ~ PI ~J6, P ~ Ph)'

If P ~ J6, but PI:::; J6, then at , :::; P/2 the corresponding solution formally coincides
with that corresponding to the scheme in Fig. 3a from [I].

14

12

*::l

2

B
d_ . 8lT.°

Qo' :::.::e.
.JRh' h CTo

o 3 6 9

FIG. 3.

12 15 18

At the interval of time P/2 S' S '1 the solution coincides in its form with (5.1), if we
admit in it

u v/J2-z+[v In(z+v)(1-J2)/(z 1')(1 +J2)J/4. (5.6)

At the instant of time, = '1 the plastic domain in the middle of the span vanishes. Then
'I is determined from the condition Yl(' d = I and has the form

'I = P{I-[J2(J(2)chfJ+shfJ)J I}, f3 = (/1 J6)/J3

z1 = v(ch fJ +J(2) sh fJ)/(sh fJ +J(2) ch fJ).

(5.7)

(5.8)

For '[1 S '[ S TO the solution will outwardly have the same form as the corresponding
scheme in Fig. 3a from [IJ, if we take expressions (5.3) and (5.7) for u, '[1 and (5.8) for 21'

The time of stopping ,0 and the residual displacement are again determined by expres­
sions (5.4) and (5.5), if for, 1 and 2 I we use in them the formulas (5.7) and (5.8).

6. SHELLS STRENGTHENED BY RIBS IN A SPAN

If in the span between rings a shell is strengthened by a system of closely spaced ring
ribs whose rigidity is essentially smaller than that of the supporting rings, then the limiting
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curve for the span between the supporting rings has the form of the rectangle A'B'C'D'
(Fig. 1).

The linear transformation
m=m, (6.1)

reduces this rectangle to the square ABCD.
In (6.1) we introduced the following definitions

h2 = H 2/2H, /1.2 = fJ02/fJOt

where W2 is the density ofthe ribs along the generator, H2 is their height, fJ02 is the yield
stress of the material in ring ribs, 2H and fJ0 t are the thickness and the yield stress of the
facings, respectively. Then, if in all the above formulas the value P is replaced by q P - K 2 ,

then we obtain the corresponding solutions for shells, in which the spans between the
supporting rings are strengthened by closely spaced ring ribs of "small" rigidity.

With the help of such substitution we obtain from [IJ the solution for a shell which
has a finite length with absolutely rigid supports and which is strengthened by closely
spaced (fl < fl*) ring ribs of "small" rigidity.

If the spans of the shell between the supporting rings are strengthened by longitudinal
ribs of limited rigidity then a square ABCD (Fig. 1) may be used as a limiting curve for the
span if the value

m = Mx/M*

is taken as a dimensionless bending moment.
Here M * is a limiting and bending moment for the shell strengthened by longitudinal

ribs and equal to [4], [5]
M*=fJoH2(1+2h1+Wthi), h1=HtlH

for a two-layer strengthened shell,

M* fJ OH 2(1 +2h t +w1hf)/(1 +2h1)

for a one-layer symmetrically strengthened shell, and

[
fJo[H2+W1H 1(H1 +2H)/2-wiHI!4] ... w1HI/2H:s;; I

M*=
fJo[w1H1(Hl +2H)/2+w1H

2-(H w1H -w1Ht/2)/WI]'" w1Hd2H;;::: 1

for a one-layer asymmetrically strengthened shell.
Here 2H is the entire thickness of the facing, HI is the height of the longitudinal ribs,

WI is their density in the circumferential direction. Then all the solutions obtained above
will be also correct for shells with spans strengthened by longitudinal ribs, if one substitutes
c for fl, the value c being determined by the expression

c2 = fl2fJOIH2/M*.

If the spans between the supporting rings are strengthened by closely spaced longitudinal
and circumferential ribs of "small" rigidity, then to obtain the necessary solutions, it will
be sufficient in all of the above formulas to replace P by q and fl by c.

7. CONCLUSION
Depending on the rigidity of the strengthening rings the motion of the shell is different

in character. If the load and the parameters ofthe shell and of the strengthening rings satisfy
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po:::;:p:::;:po, P:::;:P*

then the shell motion corresponds to axisymmetric squeezing. The value of P* determines
the boundary of various forms of motion.

If

Jl* :::;: P :::;: PI'" PM:::;: P :::;: PI *

p:? JlI"'PM :::;: P:::;: P1M

then the shell moves in the span between the rings with plastic hinges near the supporting
rings and in the middle of the span. The rings remain motionless. The dependence of f/*
and fl.1 on the rigidity ao of the ribs at various values of 0 is plotted in Figs. 3 and 4.

10

8=
d 80';

ao = -
JRil h <To

:.i
4

2

0 :3 6 9 12 15 18
Qo

FIG. 4.

If Jl :? PI and PIM :::;: P :::;: P2 • the shell also moves in the span and the rings remain
motionless but there is a plastic zone. The value PlM determines the load at which a plastic
zone appears in case of motion with motionless rings. PI. and P2 • are the maximum loads
at which the rings remain motionless.

If

then the motion of the shell occurs with a hinge in the span and is accompanied by the
motion of the rings. The stopping time of the moving rings To is equal to the ratio of the
acting load to that of their load-carrying capacity. At Jl = J6 the shell stopping time
coincides with the corresponding time [1] in case of motionless rings. p. is a load at which
a plastic zone occurs in the shell with moving rings. It exceeds the corresponding load for
the case of absolutely rigid supports.



T ABLE I. SHELLS WITH "LONG" SPANS

Inequality Equality (10 P,* P 1·2225 1·4835 1·5335 1-6890 1·8317 2·2122 2-8118 B020 OOסס,4

6·(}()()o 1·2225 0·1335 0·3557 0·4051 0'5771 0·7537 1-3269 2·5271 4·3484 5'9734 CI
'<

II > /13 > .)6 II = 6 ::s
OOסס,9"' 1·4835 - 0'3561 0·4067 0·5785 0·7549 1'3292 2·5297 4·3577 5-9815 3

Rings of P:::>: Pz* 0=0'20 n'
cr'

limited rigidity OOסס,12 1·8317 0·7578 1-3320 2·5318 4·3617 5·9824 '"::r'

W1(rO) '"<:
OOסס,12 2·2122 1-3355 2·5384 4·3674 5·9824 o'

c:
/1 > II, < .)6 II = 6 ...

0
OOסס,15 2.8118 - 2·5384 4'3674 5·9824 -,

(')

P:::>: Pz* I) = 0·25 ':S
OOסס,18 3·5020 4·3674 5-9824 :;'

0.
::l.
(')

Absolutely rigid rings /1=6 P'M = 1·1666 0·1335 0·3561 0-4064 0·5787 0·7578 1·3355 2·5384 4·3674 5·9824 :::.
V>
::r'
!!.
<;;"

~
TARI.E 2. SHELLS WITH "SHORT" SPANS ...

'"::s
(JQ

Inequality Equality IJ P,* P* P 2.6917 3·0000 3·3571 3-4812 3-9592 4·0612 5·0000 ooסס·6
:;.
'"::s
'"0·2500 2·6917 4-4082 0·6708 1·6239 1· 8361 2·7552 2-9723 5'1797 8·0588
0.

1·0735
~.

/1* < /1 < liz :;.
Go = 15 0·3000 3-3571 4·2177 1'6658 1·8818 HI71 3·0379 5·2294 8·1303 ...

Rings of P:::>: P,* It = 1'4
:;

(JQ

limited rigidity 0·3500 3-9592 4·0816 W,(T O) 2.8494 3·0723 5·2411 8·1473 ::l.
0"
V>

P:::>: P1* (10 = 18 0·2500 3-4812 4·1837 1·8877 2-8257 3·0472 5·2338 8·1367_.
Absolutely rigid rings II = 1-4 PM = 2·0204 P'M 4·0612 0·6708 1·0909 1·6658 1·8877 2·8494 3·0767 5·2413 8·1475

c<:
w
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If Jl.I > .J6 then at

max(.J6, Jl.*) :s:: Jl. :s:: Jl.I and PI*:s:: P :s:: P*

the motion has the same character, but after the rings stop there occurs a plastic zone in
their vicinity. If P ~ P** the shell motion is accompanied by that of the rings and by the
occurrence of a plastic zone, the size of the latter decreasing as the rigidity of the rings
decreases. In the case under consideration after the load is removed the ring stops before
the plastic zone vanishes if Jl. ~ Jl.I and after that if Jl.* :s:: Jl. :s:: Jl.I'

The calculation done by the given formulae shows that the maximal residual displace­
ment accumulated in the shell during its motion in case of "local" collapse practically does
not depend (with an accuracy of about 4 per cent) on ring rigidity and coincides accurately
enough with the maximal residual displacement of the smooth clamped shell of the same
radius and a length equal to that of the span. True, the distribution of residual displace­
ments in these shells is essentially different.

Thus, in determining the maximal residual displacement there is no necessity to take
into consideration the motion of shell supports. Tables 1 and 2 represent some values of
maximal residual displacements by way of example (at 0"01 = 0"02, VOl = v0 2 ).
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A6cTpaKT--B pa60Te I1CCJIe)lOBaHO )lI1HaMI1'1eCKOe nOBe)leHl1e 6eCKOHe'lHO-)lJII1HHOH UI1JlI1HJJ,pI1'IeCKOH
060JIO'lKI1 \n l1)leaJIbHO )I(eCTKO-nJIaCTI1'1eCKOrO MaTepl1aJIa, nO)lKpenJIeHHOH KOJIbueBblMI1 pe6paMl1
OrpaHI1'1eHHOH )I(eCTKOCTI1. OCHoBHble npe)lnOJIO)l(eHl1l1l1JJ,eHTI1'1HbI npl1HlITbiM B pa60Te [I], BblTIOJlHeHHoit
AJIli o60JIO'leK c a6COJIfOTHO )I(eCTKI1MI1 KOJIbuaMI1.

OnpeAeJIeHO pacnpeAeJIeHl1e MOMeHTOB 11 npOrl160B, HaHAeHbi BeJII1'1I1Hbl OCTaTO'lHbiX npOrl160B 11
BpeMeH OKOH'IaHl1l1 JJ,BI1)1(eHl1l1 AJIli pa3JII1'1HbIX BeJII1'1I1H Harpy30K, napaMeTpoB 060JIO'lKI1 11 nOAKpeI1JI­
1I101l.\I1X pe6ep. nOKa3aHO, 'ITO npH "MeCTHOM" pa3pyweHl111 OCTaTO'lHbIH nporl16, HaKanJII1BaeMbIH B
060JIO'lKe 3a Bce BpeMlI ABH)I(eHlill, npaKTli'leCKIi He 3aBI1CI1T OT lKeCTKOCTI1 KOJIeu 11 C xopoweH TO'lHOCThIO
COBnaAaeT C MaKCliMaJIbHbIM OCTaTO'lHblM nporli6oM 060JIO'lKI1 C a6COJIIOTHO )I(ecTKI1MH KOJIhuaMIi.
IToKa3bIBaeTClI, 'ITO Bce nOJIy'leHHble pe3YJIbTaTbI, nyTeM cooTBeTCTBYlOll.\l1X nepe0503Ha'leHI1il:, nepeHOC­
lITClI Ha CJIy'lail: 060JIO'leK, nOAKpenJIeHHbIX B npOJIeTe Me)l(AY onopHblMH KOJIbuaMIi, npOAOJIbHblMIi Ii
KOJIhueBbIMIi pe6paMIi "MaJIoil:" )I(eCTKOCTIi. ITOJIY'leHHble pe3YJIbTaThi cnpaBCAJII1Bbl TaK)I(e )J,JIlI UliJII1HAP­
li'leCKliX 050JIO'leK KOHe'lHoi!: )lJlliHhl C nO)J,BIi)l(HbIMIi pe6paMI1.


