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DYNAMIC BEHAVIOUR OF CYLINDRICAL SHELLS
STRENGTHENED WITH RING RIBS—PART L
INFINITELY LONG SHELL

Y. V. NEMmirROvVsKY and V. N. MazaLov
Hydrodynamics Institute of Siberian Division of the USSR Academy of Sciences, Novosibirsk. USSR

Abstract-—The paper considers the dynamic behaviour of infinitely long cylindrical shells made of ideally
rigid-plastic material and strengthened with ring ribs of limited rigidity. The principal assumptions are identical
with those made in the work [1] where shells with absolutely rigid rings were considered. Distribution of moments
and displacements is determined. The values of residual displacements are found as well as of motion stopping
times for various loads and parameters of the shell and its strengthening ribs. The maximal residual displace-
ment accumulated in the shell for the entire period of motion under the conditions of “local” collapse is shown
to be practically independent of the ring rigidity and to coincide rather accurately with the maximal residual
displacement of the shell having absolutely rigid ribs. It is shown that all the results obtained can be applied.
after suitable redefinitions, to the case of shells strengthened in the span between the supporting rings, by
longitudinal and ring-like ribs of “small” rigidity. The results obtained are also valid for cylindrical shells of
finite length with moving supports.

NOTATION
2IR, 2R the length of a span, the radius of the middle surface, the thickness of a shell wall, respectively
T, the turning force per unit of length carried by a facing
26,d the height and the breadth of a rib, respectively
M, the bending moment per unit of the circumference of the middle surface
w the radial displacement
r the uniformly distributed pressure
to the duration of pulse action
Yot Yoz the surface density of the material of a facing and ribs, respectively
x the coordinate on the generatrix
t the time
Gg1s 002 the yield limit for stretching-pressing the facing and the ribs, respectively
Vo1 Vo2 the specific weight of a facing and ribs, respectively.
INTRODUCTION

THE dynamic behaviour of cylindrical shells strengthened with rings from ideal rigid-
plastic material and under the action of impulsive loads was studied by Hodge [1-3],
where infinitely long shells were considered and the rings were assumed to be absolutely
rigid. Thus, the behaviour of a smooth shell with the length equal to the distance between
the rings was effectively studied in [1-3]. The behaviour of real shells strengthened with
rings of limited rigidity has a number of peculiarities which are considered in the present
paper. Just as in [1] it is assumed that the material of the shell and rings is ideally rigid-
plastic and satisfies a simplified yield condition (Fig. 1) and the flow law associated with it.
An impulse of rectangular form (Fig. 2) is applied. The duration of its action is assumed
to be sufficiently short for the deformations to be regarded as small compared with unity.
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To simplify the study it is assumed that the strengthening elements have a rectangular
cross-section and their torsional rigidity is neglected. Under the above assumptions we
study the character of shell motions for various values of impulsive loads, various stiffnesses
of strengthening rings and various parameters of shell spans. It is shown that all the results
hitherto obtained by means of corresponding redefinitions are applicable in the case of
shells strengthened in the span between stiff longitudinal ribs and/or ring ribs of “small”
stiffness. The results obtained are also valid for cylindrical shells of finite length with moving
supports. It should be noted that at the “local” collapse the maximal residual displacement
accumulated in the shell for the time of its motion practically does not depend on ring
stiffness and with a good accuracy coincides with maximal residual displacement in the
shell with absolute rigid rings.

1. AXISYMMETRICAL SQUEEZING

Just as in [1-3] let us consider first an infinitely long shell strengthened with equidistant
rings, the distance being equal to 2/. Then under the action of equally distributed impulsive
load P the behaviour of all the spans in the shell is identical, so it is sufficient to study the
behaviour of one span. Then the equation of the cylindrical shell motion in the span
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between the rings in dimensionless form is the same as in [1]:
m'+2uit, + P—W) =0 (1.1)

and the equation of ring motion has the form

p+q +q" —(1+ag)—iW, =0 (1.2)
where

m = M,/og1h? t, = To/200.h, P = pR/2041h, u = 1//(Rh)
W = Wy R/260, L3, ay = 804,/hag,, g5 = m'(Q,1)/2u0
0 = d/\/(Rh), & = 1+702/701, Wo(1) = W(0, 7).

The primes indicate differentiation with respect to the dimensionless coordinate y = x/I
and the dots with respect to dimensionless time t = t/t,. The origin of the coordinates is
chosen at a supporting ring.

Under the action of relatively low loads and at sufficiently great rigidity of rings there
will be no shell motion until the load reaches its maximum value of Py, for the span [1]:

Py = 1+2/u2. (1.3)
In this case the shearing forces on the bay support are equal to
m(0,7) 2
g* = =—" (1.4)
2u0 ud

If at the given value of Py, the stress in the ring reaches the yield stress o,,, then sub-
stituting (1.4) into (1.2) at W(r) = 0, we obtain the equation

wilag—au—20 = 0.
The root of this equation
e = 2[1+(1 +6%ay/2)*)/0a, (1.5)
defines the optimal placing of rings at which for the loads close to the static maximum
ones “‘the local” collapse of the shell in the span between the rings (u > p,) is replaced

by the “general” collapse of the shell, together with the rings which corresponds to axis-
symmetric squeezing (¢ < p,). If 4 < p, and P < P°

P® = 1+ 6ay/(6 +2u) {1.6)

then there is no shell motion. If u < u,, but P > P°, then there is shell motion which
corresponds to its axisymmetric squeezing. In this case W(y,t) = Wy(t) and t, = —1.
Substituting these values into equation (1.1) and integrating it under the conditions

m(l,1)=0, m0,7)=myt)...(—1 <my < 1)
we obtain
m = mg+p{Wo+1—P)(y—2)y.
Then from (1.2) we have
Wo = [(P—1)2u+0)—0a,]/2u+ 10).
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Taking into consideration the initial conditions
Wol0) = Wo(0) = 0
we obtain

Mg+ 202~ yly

(21 +0)
Wolt) = [(P— D2+ 0)—Oag)t?/2Qu+ 20)

1, = —1,

(1.7)

A= (PN —D4dy.. . 0<y< 1,0 <)

From (1.7) it is evident that Wy(t) > 0 at P > P°. As for the axisymmetric squeezing we
should have —1 < m < 1, then the solution (1.7) is valid under the condition that

P < Py = (Py—aP )1 ~2y)
ay = (u+200/(u+20), Py, = 1 +2(ubag —3)/u(p+26)

For r > 1 a shell will continue its motion under its own inertia (P = 0). The corresponding
solution of equations (1.1) and (1.2), with the use of the initial conditions for Wy(1) from (1.7)
at v = 1, has the form

m = my+ 0121 +ay— 12— y)v/Qu+ A0), ty = —1,
{1.8)
Wo(t) = {PQu+0) 21— 1)—2u+ 01 +ag)]t?}/2Q2u + 7.0) OD<y<hl<t<19.

The solution (1.8) will be valid if it satisfies the inequalities m'(0, 1) > 0 and W(y.7) > 0,
or

Y = 001Y02/002V01 < 1, < =P/P° (1.9
The residual displacement is
Wo(t%) = Qu+OP(P—P%)/2P°2u+ 10). (L.10)

It should be noted, that in the case of identical material of the shell and rings the bending
moment in (1.8) does not depend on y. It is due to the fact, that under the axisymmetric
squeezing the behaviour of an infinitely long shell is identical to that of rings made of the
same material.

The condition of immobility of rings

Further, if no special stipulations are made, we will consider the shell spans for which
# = p, . In this case dynamic loads either do not cause any motion at all or cause a motion
with a bending in the span. Then, depending on the rigidity of rings and the value of the
acting load the rings either remain motionless or accompany the shell motion.

Further, we shall consider only the second possibility, as the first one corresponds to
the motion of a smooth shell clamped at the ends, studied in {1]. For this we should define
first the largest loads under which the rings are motionless. From solution 1] for shells
with motionless supports it follows that the shearing forces at the supports do not increase
with time. Thus, if rings are motionless during the load action they will remain motionless.
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From [1] we obtain

. _ {[pZ(P~1)+6]/4,u9...(PM <P <Py (L.11)
[6(P—1)]2/20...(P = Pyy)
where
Py = 1+6/1%. (1.12)

Naturally, depending on the rigidity of the rings, the stresses in them may reach yield
stress under the loads P < P, as well as under the loads P > P,,,. Consequently, sup-
posing in (1.2) Wy(r) = 0 and substituting (1.11) into it, we shall obtain the following
maximal loads under which the rings remain motionless (though the shell in the span is

in motion):
P = 1+ 2o = 3/(u-+20) ... (uy < 1 < o) (113)
Py, = 1+6/u}.. . (u= uy)

where
i = 3[1+(1420%a,/3)})/0a, (1.14)

is a root of the equation in the expressions obtained from (1.2) by substituting into (1.11),
the values P = P,,, from (1.12) and Wy(7) = 0.

From (1.13), (1.14) it is obvious that the maximum dynamic load for the rings under
fixed values 0 and a, increases with an increase of u over the interval

Mo < 1< iy (1.15)

and does not depend on g at u > u,. Such a qualitative difference is the result of two
essentially different types of the shell span motion : with a plastic hinge (u < u,) and with
a plastic zone in the middle of the span (u > u,).

2. SHELLS WITH “SHORT” SPANS UNDER “MODERATE” LOADS

If the excess of the load P over P, is not considerable then though the motion of the
shell span is accompanied by that of the ring, it is natural to assume that the plastic regime
and the corresponding fields of displacement velocities are the same as in case of motion-
less supports [1]. Thus for the shells with the span (1.16) the regime AB is assumed for
which

t, = —1 (2.1
and the corresponding field of displacement velocities has the form
W(y, 1) = Wo(t)+ [Wi(t) — Wo(D)ly... (0 < y < 1). 2.2)
Here the dimensionless displacement W(y, ) is defined by formula (1.2) and

Wi(t) = W1, 7).
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Substituting (2.1) and (2.2) into (1.1) and integrating the obtained equation under the
boundary conditions

m(0, 1) = —1, m(l,7) =1, m(l,7) =0 (2.3)
we obtain
m = (W, — Wo)y /3 —(P—1 - W)y ]+ Ay—1 (2.4)
WR2W, 4+ Wy —3(P—1)]4+6 = 0 (2.5)
qt = A2u0 (2.6)
where

A=2— 1 {(W,—W)/3—P+1+W,)

Substituting (2.6) into (1.2) and integrating the obtained equation under zero initial condi-
tions we obtain
Wolt) = ay(P—P, )t?/2...(0< T < 1) (2.7

Then from (2.5) we obtain

W, (1) S LA R — 0<t< 1. (2.8)

Thus the complete solution for the first phase of the motion will be

m = /‘2‘{[P1*'PM+(1 —al)(PwP‘*)]y3/2—[(l ~rx1)P+a1P1*—1]y2}

{2+ [Py+a P+ (1 —a)P =222}y —1, 1, = —1 (2.9)
W(y,1) = {QL(P‘*”PMH(; _“‘)(P_Pl*n+<x1(P—P1*)}12/2

0O<t<l1, 0gy<l, O<us<syp, P ,<P<P,)

The necessary limitation (—1 < m < 1)for the regime 4B will be satisfied, when inequality
(2.10) is also satisfied, where

P*Z(PlM‘fXxPx*)/(l““l)- (2.11)

Note that P, > P,y i.e. in the case of rings with limited rigidity, the load, at which the

plastic domain occurs, exceeds the corresponding load in the case of absolutely rigid rings.

For t > 1 the load is vanishing (P = 0). Then, integrating, as above, the equations
of motion (1.1) and (1.2), and considering (2.1), (2.3) and initial conditions (2.7), (2.8) for
7 = 1), we obtain the solution

m = p*(ay Pry— Pa)y? /2 — (a1 Pry — 1)y? + (o, Py + 3Py —4)y/2] - 1,
t, =1,
W(y, 1) = Wo(D)+[Wi(D)—We(D)ly... 0 <y < 1,1 < 7 < 79)

Wo(t) = ay[(P— Py ) (21— 1) =Py (t—1)})/2...(1 < 1 < 7o) (2.12)
Wi(1) = {[3—a))(P—Py,)+ 3P~ Pyl 21— 1) — 2+ Piyy— o, P ) (r — 1)} /4
(<1< 1)

(1—6/ud)jay <Py, <P <P,, pe<pu<p. (2.13)
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In this case the condition Wy(r) > 0 leads to the inequality
1< 15 = P/Py,. (2.14)

At the moment 1 = 1, the ring stops its motion, though the shell in the span is still moving
as

Wi(to) = 3to(Pra—Pu)/2 = 0. . (1t 2 1,).

Consequently, it is necessary to find a solution under the same regime AB and for P = 0,
Wo(t) = 0. As initial conditions we use the following

W(O0, t9) = Wo(7o), W1, 1) = Wilto)s w1, To) = Wi(to). (2.15)
The corresponding solution is

m= —(1+@223 + 22 + B~ 2y -1, t; = —1,

(2.16)
Wiy, 1) = Wolto)+[Wi(t)— Wolto)ly,
Wilr) = Wi(to) + Wi(to)(t —10) = 3Pyt —10)*/4
(to<1<7 p,<u<p, P,<P<P)
In this case the necessary inequalities for the regime AB [1] will be satisfied, if
fe < p < (/6. (2.17)
The condition W,(r) > 0 leads to the inequality
1 < 1% = P/Py. (2.18)

At the moment t = t° the motion is stopped and the maximal residual displacement is
determined by the formula

Wi(2°) = Wi(to)+ Wi(to)(t® — 10} —3Py(t® —10)*/4. (2.19)
Note that the time of stopping (2.18) for the shells with spans (2.17) with mobile rings

coincides with the corresponding time of stopping the motion in case of motionless rings
[1]. The solution obtained in the present section is valid for shells with “'short” spans

fy < < pp = min( /6, uy). (2.20)
and under “‘moderate’ loads
P,<P<P,. 220

If 4y > /6 then under the “moderate’ loads (2.21) in the shells with “moderate” spans

max(\/6, py) = s < p < gy 2.22)

at the moment r = 1,4 of ring stopping there occurs near the ring a plastic domain (regime
AD). As the corresponding motion takes place with the motionless rings, the solution may
be obtained in the same way as in [1]. Then the time of stopping may be determined by the
equality

10 = To{1 +3(Piy— Pu) [1 = (P — 1)}]/2(2 = Py )} (2.23)
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and the residual displacement has the form
Wi(1°) = Wi(10)+ [370(P1 4 — Pu)/2Q2 — Pia))* X [2— Prag + (P — D) In(Pyy — 1D)/2 (2.24)

where W, (14) and 1 is derived from expressions (2.12) and (2.14).

3. SHELLS WITH “SHORT” SPANS UNDER “HIGH” LOADS
If p, < /6 and

P>P,, =

{P*---(u* < <)
Pyyo o (= 1y)
then in the shell, two plastic regimes will be realized
ABO <y <y, and By, <y<1).
Therefore, the distribution of the displacement velocities will be as follows
W(p, 1) = Wolt)+ [Wos(2) = Wolt)lv/yy, Worlt) = Wiy, 1)... (0 < y < y)).

Substituting this value into (1.1) and integrating it under the boundary conditions

m0,7) = —1,m(y; —=0,7) = m(y, +0,7) = L,m'(y;,—0, 1) =m'(y, +0,71) =0 (3.2)
we obtain

m= 2By 3 +Wo—P+ 1)y +cy—1...(0<y <y

2.2 v . (3.3)
Wyil2By +3(Wo—P+1)]+6 =0

d . . .
plo) = 5 Wor(@) = Wo(@llyr, ¢ = 2—u?yi(By/3+Wo—P+ 1))y,
In the interval y; < y < 1 we have
m(y5 T) = 1’ t = _1’ W(y, T) =P-—1.

Integrating the last equation under the zero initial conditions and taking into considera-
tion the continuity of displacements and velocities on the boundary y = y,

W(y,—0,7) = W(y, +0,1) = Wo1(1), W(Yl -0,7) = W()’l +0,7) = W01(T)
we obtain
W(y, 1) = Wy, (1) = (P— 1), Wy, 1) = Wou(1) = (P—1)%/2

i<y 0<t<)

(3.4)

Now, from equation (3.3) for the value W, by integrating it under zero initial conditions,
we obtain

Wol(t) = (P—1—-6/u?yi)r. (3.5)
From equation (1.2), using expressions (3.3)+3.5) we determine the unknown boundary
Yo1 = UoB, vo = [6/K*(P—1)]}
B = [3(P—1)/2]* . [1 +(1 +246%x/3)*]/0a.
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Consequently, as in the case of motionless rings, the plastic zone which occurs in the
middle of the span under loads (3.1) remains stationary during the load action and its
value depends on the “static” (6, a,) and ““dynamic” (4) rigidities of rings.

The complete solution for the first phase (0 < 7 < 1) of motion is

0<y<yor:m=1-21-y/y,)3, 1y =—1
Wy, 1) = [P—1-6(yo, —y)/y2y81]12/2
yvor<y<limy,t)=1, t,=-1, Wy1=(P-1)x}2

(3.6)

G.7
O=<t<1, P>P,.,, B )

The necessary inequalities [1] for the considered regimes are satisfied and the condition
W(y, ) = Oleads to the condition yo; > voor B > 1. The latter will be satisfied if P > P,,.
This inequality is satisfied as in the interval g, < g < y, (which is not difficult to check)
P, >P,,.

Since vy determines the size of the plastic domain at the motionless rings, the inequality
Vo1 = v means that a decrease in rings rigidity leads to a decrease in the size of the plastic
domain in comparison with that in the shell with absolutely rigid rings under the same
load.

For t = 1 the load is vanishing. Therefore, making calculations analogous to the above
ones we obtain (for P = ()

0 <y < yy(r)em = 293%(y/y1) =21+ 2%p) (/v ) +2Q + yi%hy/y, —1, =1,
W(y, 1) = P~1—6x(y; — y)/ui?

, (3.8)
o<y < imiy, 1) =1, i, =1, Wy, 1) = P—1
{1 <1< 190, = p,, P>P,,, y<1)
{yd’f) = 3{1+[1 +220%a(1)/3]}}/ubur(7) 39)
a(t) = (1= A1 =P/t)+ao, x(7) = t/y3.

Since y,{1) is a monotonically increasing function of time, after removing the load the
plastic domain begins to shrink. The conditions y,(t) < 1 and W(y, 1) > 0 reduce to the
inequalities

T < 1o = { - (3.10)

In this case 14 determines the time of ring stopping when the plastic domain still exists,
7, determines the time of the plastic domain vanishing when the ring is still in motion.
Indeed,

yilt) =1, Wolty) = TPy —Pia) 2 0. (uy < < y)

as P, > P,,. For = p, the time of the plastic domain vanishing coincides with that of
the ring stopping.

Now we will study the behaviour of the shells with the span u, < u < p,. Since at the
instant of time t = 7, the plastic domain shrank into a plastic in the middle of the span
and the rings are still in motion, the solution will be the same as in (2.12) only instead of
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initial conditions at 7 = 1, as in (2.12), one should use the corresponding initial condition
at v = Tl .

Then the expressions for ¢, and m coincide with (2.12) and for the displacement velocity
we obtain

W(% T) = WO(T)+ [Wl(f)“ WO(T)],V’ WO(T) = 1Py —Piny) = Pyt —1y),

. (3.11)
Wi(r) = P—Tl”(2+P1M—0(1P1*)(7‘T1)/2-
Here

T, <1< 19 = P/Py,, 0<y<l, e < < iy, P>P,.

At the moment of time 1t = 7, the rings stop, but the shell in the span between the rings is
in motion according to

Wi(to) = 319(Pry—Pu)/2 2 0
the equality being possible only at u = p, (Py, = Py).
For t > 1, the corresponding solution is obtained in the same way as in (2.16), so that
m and t, coincide with the expressions (2.16) and for the displacement velocities we obtain

W(y, 1) = 3Py(t°—1)y/2. . (1o <1< 1°0< y < Loy, < pu < pp) (3.12)

At the moment of time t = t° = P/P,, the motion of the shell is stopped completely.
The maximal residual displacement is expressed by the formula

Wi(2%) = 3Py(1° —10)*/4+ (P — 1) (1o —T1) = 2+ Pry — o, Py, ) (To — 71)7/4

(3.13)
+[PP—-1)—(P—1)*12.. (g S p < iz, P> P,).

In the shells with the span u > p,; at the moment of time 7 = t, the ring stops and the
span of the shell has a plastic zone and is still in motion.

The corresponding solution is established just as the solution [1] in the case of motion-
less supports and with a plastic domain, only instead of initial conditions at 1 = [ as in
[1] it is necessary to use initial conditions at © = 7, from the solutions (3.8)-(3.10).

In this case the expressions for t,, m, W and y, are of the same form as in the case of
motionless rings [1]. Thus, the conditions

—“1<myn<l, Wpn=0 y<l

will be satisfied if p, < u < (/6 and © < 1, = P/Py;. At the moment of time 1 = 7, the
moving hinge circle reaches the middle of the span and the shell undergoes a motion,
corresponding to the regime 4B with hinges in the middle and at the end of the span at
motionless rings.

In this case the expressions for m and ¢, coincide in the form with the corresponding
expressions for the regime 4B obtained in [1]. For the velocities of displacement one has

Wy, 1) = [t1y(Prar— 1) =3Pyt —19)/2]y . ..
(r, <1< 1Y 0<y<l, ,uIS,uS\/(), P> Py,)

The motion of the shell is stopped at moment of time t° = P/Py, and the maximal residual
displacement of the shells with the spans p; < ¢ < /6 under the loads P > P, is deter-
mined by the formula

W,i(1°) = P{P(3Pys— Py) — 2Py P13} /4Py Py - (3.14)
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4. SHELLS WITH “MODERATE” SPANS UNDER “HIGH™ LOADS

The solutions (3.6), (3.7), (3.8) and (3.11) are the same also in the case when u; > /6
and max(/6, p,) < 4 < p, are the same until the instant of ime © = tryandatz, < v < 7°
the solution would be identical to that for the case of motionless supports and plastic
domains near them [1]. But in this case P > P, and the times of motion stopping t° are
determined by expression (2.23). The residual displacement is determined by formula (2.24),
where

Wilto) = (to— 1) [P— 71 —(to = 1) B3Py — o, Py A1+ [P(P = 1) = (P~7))*)/2.  (4.1)

5. SHELLS WITH “LONG” SPANS UNDER “HIGH” LOADS
If > py > /6, thenat t > 1, the motion of the shell occurs with three plastic regimes
ADO <y < w), ABlu < y < yy), Bly, <y <)
The corresponding solution is as follows:
O<y<u:myt= -1, 1,=0, Wiy, 1) =0
U<y <yoim= —[4y* —6(z+2uy> + 2uy,y +u+y, > —duy, + y3))/z°,
= -1,  Wy1)=P-1y—u/
mEy<limynr=1, t, = ~1, Wy, 1) = P—1
(to <t <14, 1=y > /6, P>P,,
Here
22 = (P — D2+ (B = 2P ) (P—1/(Py — (P —10)7),
u = yo—z+[vln(z+v)(yo—0)/(z—0v)(yo +0))/4,
yi=z4u, yo = [0/ (P — D, v =23/

The necessary conditions of plasticity [1] will be satisfied, but the condition W,(t) > 0
on the velocity will be satisfied if

1< 1, = P[l “\/Z(Pz*‘“l)%/Pz*(Ul ch f8, +sh B,)],
Uy = 2\/3/111» B = (l‘_lil)/\/&

At the moment t = 1, the plastic domain is vanishing in the middle of the span, but the
motion continues. At t > 7, the solution in its outward appearance coincides with solution
(21) from {1], if we admit that

(5.2)

u = uy(vt—1y)+ulry), uty) = 1-z,,

. . ) (5.3
Uy = ulty) = (2%—92/2)/21(})—71)’ zy = z{t4) :

The time of motion stopping is determined by the expression

0 = Ti+z(P~1,)/(z, +v/y/2). (5.4)
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The maximal residual displacement is found from the expression
W% = a2z, —ati)/21, + (P — D7 *In(v/z;/2)+[P(P — 1) — (P —1,)?]2,
, - , (5.5)
a=z(P—1)lz,+v/2) H=p 2 J6.P 2 Py

If u > /6, but u; < /6, then at © < P/2 the corresponding solution formally coincides
with that corresponding to the scheme in Fig. 3a from [1].

10

Fx

-

At the interval of time P/2 < t < 7, the solution coincides in its form with (5.1), if we
admit in it
22 =0 [1-21—1v/p*], u=v/J2—z+[vin(z+v)(1—/2/z~0)(1+/2)]/4 (5.6)

At the instant of time t = 1, the plastic domain in the middle of the span vanishes. Then
1, is determined from the condition y,(r,) = 1 and has the form

t = P{1-[J2J@chp+sh BI7} B = (u—/6)/y/3 (57)
zy = vlch B+ /(2) sh B)/ish f+/(2) ch p). (5.8)

For 7, < 7 < ° the solution will outwardly have the same form as the corresponding
scheme in Fig. 3a from [1], if we take expressions (5.3) and (5.7) for u, 1, and (5.8) for z,.

The time of stopping t° and the residual displacement are again determined by expres-
sions (5.4) and (5.9), if for 7, and z, we use in them the formulas (5.7) and (5.8).

6. SHELLS STRENGTHENED BY RIBS IN A SPAN

If in the span between rings a shell is strengthened by a system of closely spaced ring
ribs whose rigidity is essentially smaller than that of the supporting rings, then the limiting
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curve for the span between the supporting rings has the form of the rectangle A'B'C'D’

(Fig. 1).
The linear transformation X
m=m, i, = t,~—kysgnt, (6.1

reduces this rectangle to the square ABCD.
In (6.1) we introduced the following definitions

K, = wyhy4,, h, = H,/2H, Ay = 093/001

where w,, is the density of the ribs along the generator, H, is their height, o4, is the yield
stress of the material in ring ribs, 2H and o4, are the thickness and the yield stress of the
facings, respectively. Then, ifin all the above formulas the value Pisreplaced byg = P— K,
then we obtain the corresponding solutions for shells, in which the spans between the
supporting rings are strengthened by closely spaced ring ribs of “small” rigidity.

With the help of such substitution we obtain from [1] the solution for a shell which
has a finite length with absolutely rigid supports and which is strengthened by closely
spaced (¢ < p,) ring ribs of “small’ rigidity.

If the spans of the shell between the supporting rings are strengthened by longitudinal
ribs of limited rigidity then a square ABCD (Fig. 1) may be used as a limiting curve for the
span if the value

m=M,/M,
is taken as a dimensionless bending moment.

Here M, is a limiting and bending moment for the shell strengthened by longitudinal
ribs and equal to [4], [S]

M, = aoH*(1+2hy+wh}),  hy=H,/H

for a two-layer strengthened shell,
M, = aoH*(1+2h +whD/(1+2hy)
for a one-layer symmetrically strengthened shell, and
[00[H2+WIH1(H1 +2H)/2—wiH3/4].. . w H,/2H < 1
* Loo[w Hy(H, +2H)2+w H>—(H—wH —w,H/2)w,]... wH,2H > 1

for a one-layer asymmetrically strengthened shell.

Here 2H is the entire thickness of the facing, H, is the height of the longitudinal ribs,
w, is their density in the circumferential direction. Then all the solutions obtained above

will be also correct for shells with spans strengthened by longitudinal ribs, if one substitutes
¢ for p, the value ¢ being determined by the expression

c? = plog HYM,.

If the spans between the supporting rings are strengthened by closely spaced longitudinal
and circumferential ribs of “small” rigidity, then to obtain the necessary solutions, it will
be sufficient in all of the above formulas to replace P by g and u by c.

7. CONCLUSION
Depending on the rigidity of the strengthening rings the motion of the shell is different
in character. If the load and the parameters of the shell and of the strengthening rings satisfy
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the inequalities
P’ <P <P, [T

then the shell motion corresponds to axisymmetric squeezing. The value of i, determines
the boundary of various forms of motion.
If

e S P py...Py<P<P,
Uz . Py<P<Py

then the shell moves in the span between the rings with plastic hinges near the supporting
rings and in the middle of the span. The rings remain motionless. The dependence of p,
and g, on the rigidity a, of the ribs at various values of @ is plotted in Figs. 3 and 4.
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If 4 = p, and Py, < P < P, the shell also moves in the span and the rings remain
motionless but there is a plastic zone. The value Py,, determines the load at which a plastic
zone appears in case of motion with motionless rings. P;, and P,, are the maximum loads
at which the rings remain motionless.

If

U S P < min(\/6,/11), P,<P<P,

then the motion of the shell occurs with a hinge in the span and is accompanied by the
motion of the rings. The stopping time of the moving rings t, is equal to the ratio of the
acting load to that of their load-carrying capacity. At p = ,/6 the shell stopping time
coincides with the corresponding time [1] in case of motionless rings. P, is a load at which
a plastic zone occurs in the shell with moving rings. It exceeds the corresponding load for
the case of absolutely rigid supports.



TABLE 1. SHELLS WITH “LONG” SPANS

Inequality Equality g Py P 12225 14835 1-5335 16890 1-8317 22122 2-8118 35020 40000
60000 12225 01335 03557 04051 05771 07537 13269 25271 43484 59734
> Uy > J6 u==6
90000 14835 — 0-3561 04067 O-5785 07549 13292 2-5297 43577 59815
Rings of P>P, 6 =020
limited rigidity 12-:0000  1-8317 — - — e 07578 1-3320 25318 43617 59824
W,{°%)
12:0000 22122 — - — — — 1-3355 25384 43674 59824
B>y <6 u=6
150000 28118 — - - — — e 2-5384 43674 59824
P=P,, 0 =025
180000  3-5020 - — - — e e 43674 59824
Absolutely rigid rings u==6 Py = 1-1666 0-1335 (03561 04064 05787 (07578 13355 2-5384 4-3674 59824
TABLE 2. SHELLS WITH “'SHORT"’ §PANS
Inequality Equality 0 Py, P, P 26917 30000 33571 34812 39592 40612 50000 60000
02500 26917 44082 0-6708 10735 1-6239 1-8361 27552 29723 51797 80588
Hy < B <}y
ag = 15 03000 33571 42177 16658 18818 2:8171 30379 52294 81303
Rings of P=P, =14
limited rigidity (03500 39592 40816 Wi{ty) - - - 28494 30723 5241t 81473
P>P, a, = 18  (0-2500 34812 41837 - 1-8877 2:8257 30472 52338 81367
Absolutely rigid rings =14 Py = 20204 P, = 40612 06708 10909 16658 1-8877 2:8494 30767 52413 81475

squ Futs Yy poudyiualls sjjays [eouipul£o Jo Inoeyaq duieuid

1€8
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If 4 > /6 then at
max(\/6, u,) <p <y, and P, <P<P,

the motion has the same character, but after the rings stop there occurs a plastic zone in
their vicinity. If P > P, the shell motion is accompanied by that of the rings and by the
occurrence of a plastic zone, the size of the latter decreasing as the rigidity of the rings
decreases. In the case under consideration after the load is removed the ring stops before
the plastic zone vanishes if 4 > u; and after that if u, < p < p;.

The calculation done by the given formulae shows that the maximal residual displace-
ment accumulated in the shell during its motion in case of “‘local’ collapse practically does
not depend (with an accuracy of about 4 per cent) on ring rigidity and coincides accurately
enough with the maximal residual displacement of the smooth clamped shell of the same
radius and a length equal to that of the span. True, the distribution of residual displace-
ments in these shells is essentially different.

Thus, in determining the maximal residual displacement there is no necessity to take
into consideration the motion of shell supports. Tables 1 and 2 represent some values of
maximal residual displacements by way of example (at 6o; = 002, Vo1 = Vo3).
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AGerpakT—B paboTe uccnenoBaHO IWHAMMYECKOE TIoBeAeHHe OECKOHEMHO-IUTMHHON 1LMIIMHAPHYECKOH
060N0YKH W3 MIOCANBHO IKECTKO-TUTACTUYECKOro MaTepuana, MOOKPEMIEHHOH KoJibueBbiMKM pebpamu
OTPAHUYEHHO ecTKOCTH. OCHOBHbIE TIPEANONIOKEH M HACHTHYHBL IPUHATLIM B paGore [1], BbinosiHenHoi
s o6os104ex ¢ aBCONMOTHO KECTKUMHU KOJIBUAMH.

Onpedeneso pacrpeie/ieHie MOMEHTOB M Nporubos, HaiiaeHbl BEHYMHBI OCTATOYHBIX TpOruboB u
BPEMEH OKOHYAHMA ABWXEHMUS [ PA3INYHBIX BEJIMUYMH HArpy30K, NAapameTpoB ODOJIOYKM M NOJKPeHIl-
srowx pebep. TMokazano, YTO MpH ‘‘MECTHOM’® Pa3pyWIEHHU OCTATOYHbIH nporu®, HakarjiMBaeMblif B
060J10uKe 32 BCe BPEMsi JIBUXEHUSA, IPAKTHYECKH HE 3aBHUCHT OT JKECTKOCTH KOJIEL U C XOPOLUEH TOYHOCTHIO
COBMNAafaeT ¢ MAKCMMaJbHBIM OCTATOYHBIM IPOrHOOM 060/104KH ¢ abCOMOTHO KECTKMMH KOJbLAMM.
T1oKa3bIBAETCH, YTO BCE MOJYHYEHHbIE PE3YAbTATHI, IYTEM COOTBETCTBYIOLINX Nepeobo3HayeHui, IEPEHOC-
ATcA Ha ciydail obonovex, MOAKPENNEHHBIX B TIPOJIETE MEXAY OTMOPHBIMH KOJbLUAMH, MPOLOTbHBIMH U
KONBLEBLIMHA pebpaMy **Manoii”” xectkocTy. IToydeHHbIE Pe3yNbTaThl CIPABEAIUBBI TAKKE AN LHINHAD-
Hueckux 06OJI0YEK KOHEYHOHM AJIMHBI C TIOABHXHBIMH peOpaMH.



